目前国内的地铁(或城轨)系统是有时速100以上的线路的,但大部分线路仍是设计时速80的类型,这一般是由于线路站距,列车性能,及整体造价的问题。
国内的地铁或城轨系统目前设计时速多为整数的80,100,120,140,乃至160。时速100的线路设计大致是近年来兴起的一种方案,目前有在中大城市推广开的趋势。而时速120的线路设计,是一种在市郊或近郊轨道交通系统中比较常用的方案,下面以设计时速120的方案作为重点。
先说结论。 若线路设计的站距小,列车大部分时候加速不到100时就要减速进站,对整体而言是一种过度,是一种浪费,而非超前的设计;速度快,那么对列车的性能,以及线路的曲线半径要求就高,需要的钱也就越多,同时通达度降低,无法兼顾部分地区居民的出行需求。
总而言之,地铁(城轨)系统设计时速的快慢与否,就是由线路定位,资金以及环境条件所决定的。三者问题加起来,导致时速100及以上的地铁(城轨)系统比较少见。
站距问题:列车时速达到100甚至以上,需要线路大站距设计的支持。
在站立的乘客能够站得稳的范围内,列车的起动加速度及常用减速度都不能太高,两者高了则会使乘客站不稳,导致乘坐体验恶化。
即使紧急制动可以使列车很快的停下,但我相信很多人都体会过公车急刹的感觉,所以紧急制动并不会经常使用。早年间日本尝试过起动加速度4km/h/s以上的高性能通勤列车,但均因乘客站不稳的问题而放弃,或鲜有铁路公司有实际运用。 某种程度上来说,列车加减速性能是有限制的,是一定的,不大可能通过增强加减速性能的方式做到速度又快站距又足够小的理想设计。
而选择大站距,显然的会使列车设站减少,使得线路总体通达度降低。而在人口密集的市区内,这是万万不可取的。
不过, 如果某地铁(城轨)系统在车站内设置有供快车不停站直接通过的通过线。那么在此条件下,该线路要实现列车运行最高时速100及以上的设计,是有可能的。即使该线路可能会通过市区,但由于快车仅选择部分车站停车,相对站距加大,实现高时速是完全可行的。在城市轨道交通发达的日本,快慢车换乘是一种非常可行,能显著提高人们通勤效率的方法。然而对于大部分都在地面以下设置线路和站点的地下铁系统而言,在站点额外设置通过线,意味着又要多挖地,成本又变高不少,一般来说很少会有城市能承受得起规格如此豪华的地下铁线路。且该方法仍受到设计线位等其他线路因素的限制。高架或地面区段偏多的地铁(城轨系统)则可以考虑这种快慢车+高速线路设计的方法。
所以一般只有定位为近郊或者市郊(包括机场线)的城轨系统会选用时速100以上的列车。
造价:列车跑的越快,对列车及变电站的性能要求越高;线位要求高,选线不灵活,也就导致线路的建设成本越高。
一般而言,列车的电力牵引特性是影响列车总体性能的重点之一。在低速运行时,列车牵引力大,加速度就高;当运行速度越来越高时,牵引力就会慢慢变小,加速度随之变小,直至到达某个速度后,剩余加速度为0,列车速度不再增加。
若想保持较高起动加速度(不大幅度改变齿轮传动比),又要列车牵引力足够满足120km/h运营的条件,只能增大列车的总体牵引功率。
展开全文对于容量更大,载重也